Informatics for

Combinatorial Materials Science
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The Materials Genome Initiative

« Effective coupling between
theory and experiments are

Computational needed
Tools

o

K « Combinatorial experiments
Experimental  Digital are the natural counterpart to
computational efforts

Tools Data

Materials Innovation « Lack of concerted effort in
Infrastructure incorporating experiments;
gap between theory and
experiment

http://www.mrs.org/mgi-workshop-2014/




MANY AT A TIME Program head Andreas Marzinik (front to back) and lab specialists Raphael Gattlen and Urs
Rindisbacher of Novartis Pharma AG, Basel, Switzerland, pipette coupling reagent into 96-well reaction blocks.

COMBINATORIAL
CHEMISTRY

Chemical &
Engineering
News,

August 2001
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A Publication of the Materials Research Society
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COMBINATORIAL APPROACH TO MATERIALS
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. Combinatorial Libraries of Inorganic Materials

47 ~ Q X
/é 012345678 910111213141516171819202122232425262728293031 012345678 9101112131415161718192021222324265262728293031

4RYLP‘ om [T | | -I= 0 0 [ 0

1 T8 [ 1 1 ] 1
y 2 | N B 2 vy 2 I B B [ ] 2

3 | [} 3 3 f <] H B E B
4 EOE ¢ CEEEE s 4 3
5 [ . HE 5 5 5
6 ] 6 6 | 6
7 7 7 7
8 8 8 8
9 9 9 9
10 10 10 10
n" " 1 "
12 12 12 12
13 13 13 13
14 14 14 14
15 15 15 15
16 16 16 16 .
17 17 17 17
" R = Luminescent
19 19 19 19 u In n
20 20 20 20
21 21 21 21 t H I |' b H
2 2 2 2z Materiais lipraries,
24 24 24 24 .
25 25 25 25
5 5 X = Science 279
27 27 27 27 )
28 28 28 28
29 29 29 29
30 30 30 30
31 31 31 31

61718192021222324252627282930 31

Semiconductor gas sensor library,
“electronic nose”, Magnetic Shape memory aIon Iibrary,

Appl. Phys. Lett. 83, 1255 (2003) Nature Materials 2, 180 (2003)



SAE: > Composition Spreads of
y, Ternary Metallic Alloy Systems
(YRYLPS&

Co-sputtering scheme | ﬁ&(&\\* Sl

Ni
Phase diagram

Composition is mapped using an electron probe (WDS)

Review article: Green et al., JAP 113, 231101 (2013)



@ Rapid mapping of magnetic properties:
RS scanning SQUID

Raw data
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SQUID assembly
inside vacuum

Room temperature samples are measured | - A .
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Nature Materials 2, 180 (2003)



/@ Rapid mapping of magnetic properties:
B scanning SQUID

Raw data
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Nature Materials 2, 180 (2003)



@ Rapid mapping of magnetic properties:
constructing functional phase diagram

Mn
Ferromagnetic
regions
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Most strongly

magnetic

martensite  ,, 50

temperature

Martensites
40

Ni 20 4 Ni,Ga; 80 Ga
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Nature Materials 2, 180 (2003)



:} Rapid mapping of magnetic properties:
a,;;i;/Q comparison with phase diagram
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C. Wedel and K. Itagaki,
Journal of Phase Equilibria 22, 324 (2001)

Nature Materials 2, 180 (2003)
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@ Data driven approaches to the combinatorial strategy

RYLB

Validation of theoretical predictions (high-throughput computations)

Visualization of combinatorial data

Novel analysis methods for combinatorial data — data mining using machine learning
Incorporate existing databases (ICSD, etc.) into data analysis

Give input/feedback to theoretical calculations; AFLOWLIB, etc.

Database construction based on combinatorial data

Data mining of existing literature — data mining using machine reading

Goals: speed up discovery of new compounds and new relationships;
curation of databases which can be used for future use: data mining, etc.



Rapid structural mapping of combinatorial wafers at synchrotron

Synchrotron diffraction set up at SSRL
The entire 3” wafer (300 spots) can now be measured in 2 hrs

o Reflection set up
Transmission set up

XRF carried out simultaneously

B STRS , Each wafer produces: 300 MB to 2 GB of image data
/5( Y A
~

w/ A. Mehta
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Hundreds of XRD Spectra are difficult to
analyze by hand
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The same is true for any spectral data (Raman, FTIR, etc.)
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Peak Angle and Intensity

First step is visualization

Intensity Cross Section
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Materials Research Community
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December 2006, Volume 31, No. 12
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Takeuchi et al., |
MRS Bulletin 31,
999 (2006) :




Comparing XRD Spectra Quantitatively

Comparing Spectra Using the Pearson Correlation Coefficient:

_ i (x, =x)(y, =) My = ;l) — Il‘(ljenticallstp'ec"a
= 0.0, ry,, =0 — No correlation

ry, = -1 — Anti-correlation

ny

The spectra are either similar (i.e. they have the same structure) or
they are not (i.e. different structures).

Therefore, we rescale the correlation coefficient to describe the
dissimilarity of two spectra, instead of the correlation.

ry=1 — D=0 — Identical spectra
D, =(0-r,)/2 r,=0 — D=1/2— Dissimilar spectra
r,=-1 — D=1 — Very dissimilar spectra



Comparing XRD spectra
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D = correlation coefficient
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e ~Analyze all spectra together using cluster analysis:
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C.J. Long, et al. Rev. Sci. Instrum. 78, 072217 (2007)



Another analysis method:

Non-Negative Matrix Factorization (NMF):
(The Basic Idea)
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Experimental  weights  Basis Spectra  Residual Error
Spectra

Experimental Spectra are Deconvolved




Comparison of NMF to PCA
(principal component analysis)

Basis Patterns from NMF Basis Patterns from PCA
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NMF produces basis patterns which look like
diffraction spectra




Quantitative Identification of
Mixed Phases

: Fe,.Pd,.Ga
Pie Charts 46" Up6Idog
are Used to FCC FePd BCC Fe
R 31% .

epresent 41%
Fractional
Phases N FCCFe )\

/. . . e y e 4 22%
Fe Fe,,Gag 1
Experimental De-convolved

Spectrum H Spectrum 2
(M o aio o prtitm SR S . -

37 20 Angle (Deg.) 48 37 20 Angle (Deg.) 48




Working toward a structural phase
diagram using NMF

I BCCIFe (1‘;0) ‘ \ I
. Fe, Pd 5 jv’\/t
. OrthOrhombIC Fe g_ Hexagonal Fe, Ga,, (002)\ r/\
and Pd Silicides £ ~ N resram
® Hexagonal FeGa Bl rocfefe. (=
< /\ ~
o Orthorhombic FeSi, (220)
FCC Fe Pd x /\«— Orthorhombic Pd_Si, (123) A\

37 38 39 40 41 42 43 44 45 46 47 48
20 Angle

©® Not in Database
® Not in Database
® BCC Fe
® FCCFe

Long et al.,
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Inorganic Crystal Structure Database

 The world's largest database for '
completely identified inorganic
crystal structures. \: Y

— Around 150,000 critically evaluated
material structure data entries.

e 1,543 crystal structures of the
elements.

* 26,617 records for binary compounds.
* 50,779 records for ternary
compounds.

e 51,118 records for quarternary and
quintenary compounds.

* About 105,000 entries (74,9%) have
been assigned a structure type.

* There are currently 6,250 structure
prototypes.

http://www.fiz-karlsruhe.de/icsd.html




NST Integrating ICSD with combi XRD data

National Institute of
Standards and Technology

ERRlepasmenti RS ammengs Most ternary phase diagrams are not known

Each point on the ternary phase diagram
is one X-ray spectrum (expt)

Points on binary lines are simulated spectra from ICSD

They are rapidly mined/analyzed together

Kusne, et al.,
Scientific Reports 4, 6367 (2014)




NST Integrating ICSD with combi XRD data

National Institute of Pd
Standards and Technology -

U.S. Department of Commerce Most ternary phase diagrams are not known

Each point on the ternary phase diagram
is one X-ray spectrum (expt)

Points on binary lines are simulated spectra from ICSD

They are rapidly mined/analyzed together

Known (ICSD) — Ga

mean shift theory

qgusm},

5\‘ S\

Kusne, et al.,

% St é? Scientific Reports 4, 6367 (2014)



NST Integrating ICSD with combi XRD data

National Institute of Pd
Standards and Technology .

U.S. Department of Commerce Most ternary phase diagrams are not known

Each point on the ternary phase diagram
is one X-ray spectrum (expt)

Points on binary lines are simulated spectra from ICSD

They are rapidly mined/analyzed together

4 )

Data-mining

Known (ICSD)  puuumulo

Algorithms

mean shift theory
[

Sample Experimental
Fabrication: Characterization:
Combinatorial Rapid XRD Mapping
Library Synthesis of Libraries

HKL & Structure Diffraction

IGD Factor Database Simulation

Scientific Reports 4, 6367 (2014)




M FeysPdo 4

National Institute of
Standards and Technology
U.S. Department of Commerce

+oGar——o—o—o— ™
Fe..Ga Data-mining
0.6—%0.4 .
_ Algorithms
mean shift theory

Integrating ICSD with combi XRD data

Most ternary phase diagrams are not known

Each point on the ternary phase diagram
is one X-ray spectrum (expt)

Points on binary lines are simulated spectra from ICSD

They are rapidly mined/analyzed together

s ~\

s

Fabrication:
Combinatorial
Library Synthesis

Experimental
Characterization:
Rapid XRD Mapping
of Libraries

HKL & Structure Diffraction
Factor Database Simulation

eVigom



Real time analysis of combinatorial library data (synchrotron XRD);
Integration with ICSD

Diffraction data (integrated Pilatus images) plotted for
different compositions as they are taken

100 200 300 400 500 =) 100 200 300 400 500 AO0

Hierarchical clustering is used to group similar spectra

together

50

40-
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X-ray fluorescence data are also processed real time

100200 300 400 500

Spectra are mapped on ternary phase diagram real time
Scientific Reports 4, 6367 (2014

NST Parameters XRF @ wos Wes 1.251.75 wpp: 1.251.75

We=125 Wx=125 We=175Wx=125

We=125 Wx=175




Summary

Combinatorial experiments are the natural counterparts to
computational efforts in the MGl

Handling large amount of data is always tricky, but we are beginning
to see the light at the end of the tunnel

Machine learning techniques are actively being incorporated into
analysis of combinatorial data

We are proposing to establish
high- throughput experimentation
centers/institutes




